
AD-A132 934 INVESTIGATION OF INTRINSICALL ERROR-FREE PROGRAMS(Ul 1/1
COMPUTER SYSTEM ASSOCIATES SAN DIEGO CA
GOV WNTRSSET AL 27 JUL 83 AR0 18465.1EL-S

UNCLASSIFED 055029-81-C 0021 F/G 9/2 N

mhhhmhmmmhhuME
EEEEEEEEEC)

1'. liL4 21.

1M11 - =

AeI.

AM 4O/

Al DEPARTMENT OF THE ARMY
U. S. ARMY RESEARCHl OFFICF

P. 0. Box 12211
RESEARCH TRIANGLE PARK NORTH CAR(OLINA 17709

INVESTIGATION OF

INTRINSICALLY ERROR-
FREE PROGRAMS

uj FINAL REPORT 7It-

Approved for Public Release,

Distribution Unlimited.

CiA COUTE SySTEM ASSOCIATES
7562 Taft Sjr6 SO, Omep CA 92121

8700 on SV se- CWIAC

27 ALT 1003 U1041Cow031 W

83 0 9 2 0 023

DEPARTMENT OF THE ARMY

7p U. S. ARMY RESEARCHI OFFICE
P. 0. BOX 12211

RESEARCH TRIANGLE PARK. NORTHl CAROLINA 27709

I INVESTIGATION OF

I INTRINSICALLY ERROR-
I FREE PROGRAMS

J-,

I FINAL REPORT
DIt

Approved f or Public Release,

I Distribution Unlimited.

75(1Tram 1an . A U1 2

27 If 1111e2m onMNm

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE
THOSE OF THE AUTHOIS) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECI SION, UNLESS SO
DES IGNATED BY OTHER DOCUMENTATION.

i

' I
9 -I

-4 - ;-;

Unclassified
SECURITY CLASSPICATION OF TIlS PACE (hMM DON& Ente1M

REPORT DOCUMAENTATION PAGE 5E7ORDgCOKP~LQ7OR

1. REPORT NUMRX 2. GOVTCESO NO. 3. ECIP9NS CATALOG MUNGER

A. TITLE (ai iim- do) S. TYPE *OF REPORT & PERIOD COVERED
INVESTIGATION OF INTRINSICALLY Final Report
ERROR- FREE PROGRAMS 20 Apr 81-19 June 83

. PERFORMING ONG. REPORT UNSER

7. AATHOWS) 4. CONTRACT OR -GRART NUMSea)

G. Victor Wintriss Nicholas Panos
Jeannine Wolf Andrew Ash DAAG-29-81-C-0021
Dr. Michael Andrews

9PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKJComputer System AssociatesARA&WKUNTU84S
7562 Trade Street
San Diego, CA 92121

11. CONTR I G OFFICE NAME AND ADDRESS 12. REPORT DATE
U.. Army Resenrcf office 27 July 1983
Post Office Box 12211 1S. MUM11ER1 Or PAGES

Reserch Trangle Pare. NC 27709 45
14, MONITORING AGENCY NAME A AODRESS(H IIW0 fU.. gencao~nr Office) IS. SECURITY CLASS. (*I thistUtW

Unclassified
ISO. OECLASSI FIZATION/ DOWNGRDING

SC14EOU LE

14. OISTRI*UTION STATEMENT (at 1ia R@PWQt

Approvedj for Public ruleae: diuevlbi,egn.
unlimited.

17. DISTRIDUTION STATEMENT (of th ~~4CF04~ In 8106k *It dflit al R*Pest)

IS. SUPPLEMENTARY NOTES

T7e "IFL. OPINION4S. ANO/CR FINDINGS CON1TAIP15 1.4 THIS P49PORT
7OF THE AUTHOA(S) AND SHC'_1 "01 *q CO"STRIM AS

C CAL CEPARTMENiT Of THE Aft.ViY P'.-, PCUC', CJI 02.
Q~3101J UI.LMCS SO D MCNAT:3 3%' C -Z _cIN fA r!Qr.

IS. KEY WORDS (C..,tlnu" """0 dds i ItI"" a"~nW Udew"UUIUW bi blk ngmbr)

Finite state machine; automated program generation; error-free
software; state variables; software design; automatic program
synthesis

21L AMTRAC'r fQ01110 A..InR M *P 61I D*FVf R*M Md 61-

-/The report analyzes the application of machine design techniques to
software development. The techniques of finite state machine
design are extended to software design. The requirements for an
automated programming system are developed and a prototype system

D Fom ,, ~ on orJ EtONP'Navs is eLETE Unclassified

SECURITY CLASIICATION OP Two$ PAGE (fte Doa, EaleOd

-- UMCLASSIFIED
SCCUMlTY CLASUPICATION OF THIS PAGgahin Oda Kaafu.e)

This Page Intentioally Blank

UNCLASSIFIED .
IRCURhlY CLASSIFICATION OF THIS PAOSC(Wh"f 04W Ent@,E

!i
I

I TABLE OF CONTENTS

I 1. INTRODUCTION 1

1.1 Overview 1

2. BACKGROUND 2

j 2.1 Finite State Machine Design 2

2.2 The Finite State Machine Model 2

2.3 Synthesis Procedure 5

2.4 Application to Software Generation 6

3. STATE DIAGRAM PROGRAM GENERATION 9

3.1 Program Overview 9

3.2 Primary Menu 9

3.3 Instruction Display 10

3.4 Definition of the Variables 10

3.5 State Diagram Creation 12

3.6 Subroutine Identification 14

3.7 Creating the Source Program 15

BIBLIOGRAPHY 17

APPENDIX A. Program Implementing Mealy Machine A-1

APPENDIX B. Program Implementing Moore Table B-1

APPENDIX C. State Diagram Program Generator C-1

APPENDIX D. Skeleton Program Driver for Program D-1
Generation

APPENDIX E. Program Created by State Diagram E-I
Program Generator

APPENDIX F. List of Publications and Technical F-1
Reports and List of Participating

. Scientific Personnel

i"

ti} ...
'9. .L

LIST OF FIGURES

FIGURE 1. Generalized block diagram of circuit 4
implementation of Mealy and Moore
type finite state machine

FIGURE 2(a). Example of a Mealy type state table 5

FIGURE 2(B). The Moore table corresponding to the 5
table in Figure 2(a)

jI

9!

A QUERY BASED AUTOMATIC PROGRAMMING SYSTEM

BASED ON FINITE STATE MACHINE DESIGN

1. INTRODUCTION

1.1 Overview

The theoretical basis of finite state machine synthesis was

developed originally by G.H. Mealy (21), building on the work of

D.R. Huffman (15) and F.E. Moore (22). The objective of Mealy's

research was to develop a formal method of synthesis to replace

the intuitive approach commonly used. The systematic approach

enables the designer to formulate an unambiguous statement of

performance requirements which can then be translated into the

completed design by following a sequence of quasi-algorithmic

I steps. The procedure imposes a useful discipline on the

designer; namely, the process cannot proceed until the function

of the circuit has been completely described in the form of a

*state transition table (hereafter simply called the state table).

The conciseness of the state table yields obvious benefits in the

documentation of the design. The algorithmic nature of the

implementation procedure lends itself to automation on a computer

(10). This paper describes an effort to extend these benefits to

program design. The approach used here is to have the user

submit the state table to an automated implementation procedure

generator (a program generator). The result produced is a

" control program which directs execution to the proper subroutine

for each state transition. The procedure supports modular

K mb

program development because it can be applied to the development

of the subroutines as well.

2. BACKGROUND

2.1 Finite State Machine Design

The origins of finite state machine design can be traced to

the efforts of practicing engineers to add rigor to the design of

sequential circuits. Originally conceived as an aid to circuit

design, the basic synthesizing method has been generalized and

extended to apply to any finite-state machine (10, 12, 16, 20,

25, 29, 28). The method is now commonly used to analyze and/or

synthesize many types of systems in communications, process

control, data processing, electronics, and other applications.

The applicability of these concepts to software design has

long been recognized (1, 5, 8, 17, 24). The applicability is

confined to those processes which operate sequentially. In fact,

many programs are not sequential, in the sense that any attempt

to develop a state table yields a table which collapses to a

single state. This is, of course, a truth table, and (to press

the analogy further) such a program corresponds to a

combinational circuit.

2.2 The Finite State Machine Model

Reference 11 provides a more rigorous mathematical

formulation of a finite state machine. The purpose here is to

provide an informal basis for the development of the application

of the techniques to program generation.

The finite state machine, in its general form, can be

represented as a black box with a fixed number of time-dependent

2

(I

I input and output variables. At time intervals signaled by a

synchronizing source (called the clock), the input variables are

sampled and the next appropriate response is generated at the

J outputs. The circuit differs from a combinational circuit in

that the outputs depend on the past history of the input

1 variables. To achieve the proper response to a sequence of input

values, the machine contains memory cells, which have stored in

I them pertinent information about the previous sequence of input

values. The status of these memory cells at any given time is

call the STATE of the machine. By tagging input sequences with

certain state numbers, the machine "remembers" the input

sequence. To determine the correct output for the machine, it is

sufficient to know the current state of the machine and the

current value of the input variables. For a given state, an

. input to the machine generates an output and causes a transition

to the next state.

Figure 1 shows the generalized block diagram of a finite

state machine. The memory cells store the present state. The

combinational logic computes the next state and the present

outputs.

I
V3

COMBINATIONAL I MOORE
LOGIC OUTPUTS

INPUTS >." COMBINATIONAL MEALY
LOGIC OUTPUTS

~MEMORY

PRESENT CELLS NEXT
STATE STATE

FIGURE I. Generalized block diagram of circuit
implementation of Mealy and Moore type finite state machine.

There is a slight difference in the generation of the output

in the two types of machine as described by Mealy and by Moore.

In the Mealy model, the current output value depends on the

current state as well as the current input of the machine. In

the Moore model, the current output depends only on the current

state of the machine. For both, the next state transition

mechanism is the same. The Mealy machine version never has more

states than the corresponding Moore implementation, but this

advantage comes at the expense of spurious output pulses caused

by the need to have an output circuit respond to simultaneous

input and state variable changes. With care, the Moore machine

can be designed so that outputs are derived directly from memory

cells, and thus these outputs can be made free of spurious

pulses. However, the outputs in the Moore machine are delayed by

one clock period, compared to the Mealy implementation of the

same function.

Figure 2(a) shows a typical Mealy state table. Figure 2(b)

is the corresponding Moore table for the same function (reference

14 describes how to perform Mealy/Moore table translations).

PRES. japUT INPUT
STATE 10 1 2 31

W I B C C A 2 1 1 3 FIGURE 2(a).
B A B B D 4226 An example of a MEALY
C D D C C i1 1 4 4 type state table.
D ABCC 3255I TI4EXT STATE ouTPuTINE

PRES. INU
STATE 1-2 3I 3 4 4 1 3

2 3441 4

3 2338 2
4 7 7 5 5 1 FIGURE 2(B).
5 7755 4 The MOORE table
6 7 7 5 5 5 corresponding to the
7 1 3 6 6 1 table in Figure 2(a).
8 366 6
NEXT STATE OUTPUT

2.3 Synthesis Procedure

Once the state table has been formed, the following

procedure is used to achieve a circuit realization. (This

procedure implements the structure of Figure 1 in that it

segregates the circuit into a sequential part, implemented by

memory cells, and a combinational logic section. Thus the

solution is ultimately reduces to a set of Karnaugh maps

depicting the combinational circuit, which provide the next state

conditions for the memory cells.)

1. Minimize the number of states, i.e., eliminate redundant

states from the table.

2. Assign a unique binary code to each state. This step

begins the process of converting the symbolic state table to a

binary circuit implementation. This step is referred to as state

assignment.

3. Refine new binary codes to redefine the state entries in

the form of binary excitations applied to memory cell inputs.

5

- 7

4. Transfer the excitation table entries to memory cell

input Karnaugh maps.

5. Derive memory cell input equations. These equations

embody the circuit implementation.

The details of this synthesis procedure are described in any

good textbook on logic design (9, 14). These details are not

considered here because the primary goal of circuit design is to

minimize circuit component count, whereas the program generator

has broader objectives, namely, concise documentation, the

production of unambiguous, error-free code, and the

standardization of the program development phase.

2.4 Application to Software Generation

In order to understand the application of the finite state

machine model to program generation, we must first identify those

mechanisms of the program which are analogous to the machine's

synchronizing source, and the machine's inputs and outputs.

Interestingly, the synchronizing source could be implemented

by either a real time clock which causes a periodic interrupt, or

by a variable period default "clock" which corresponds to the

execution time of the system program loop. A good example of a

predetermined sampling period is a computer's real time

multitasking operating system, in which a periodic interrupt

(e.g., every 10 microseconds) takes the system to a task

selection routine (23).

In the program generator application, the inputs are defined

variously, ranging from real time binary input variables,

monitored through a parallel input port, to complex system

I

I conditions, analyzed and coded by a separate input subroutine.

Outputs can range from binary output signals appearing on

parallel output ports, to system tasks implemented in subroutines

or interrupt service routines.

The implications for program generation of the Mealy/Moore

I dichotomy center on convenience factors rather than circuit

considerations. For example, the Mealy approach would seem to be

appropriate when the number of states is to be minimized and/or

when a system is task intensive, because in a Mealy

implementation, the state table can contain fewer states than

S1tasks. This advantage might be offset, however, by the fact that

the Mealy model requires two matrices to be stored, one for the

Inext state transitions, the other for the tasks. The Moore model

has the advantage that is is easier to catalog the states and

Itasks, because each state is associated with a task, whereas the
Mealy table associates a number of tasks with each state,

corresponding to each of the input conditions.

I The procedure for going from state table to implementation,

outlined in section 2.3, has minimal applicability to the problem

of program generation. The reason is that this procedure becomes

unwieldy when applied to large state tables. Most practical

software systems will contains hundreds, or even thousands, of

states. For example, the sewing machine controller in reference

18 has 235 states.

The programs in appendices A and B, written in BASIC,

demonstrate some of the concepts just discussed, including the

difference between Mealy and Moore implementations. These

7
1 diferncebeteen eal an More mpleenttios. hes

programs implement the state tables presented in Figure 2. In

both programs, lines 400 through 700 form the program loop, and

thus define the software "clockm period. Notice also that in the

Mealy version, the determination of the next state is postponed

until after the required task is executed.

61

I

3. STATE DIAGRAM PROGRAM GENERATOR

g3.1 Program Overview

The purpose of the State Diagram Program Generator is to

provide a vehicle for developing computer programs which can be

defined with finite state machine techniques. The program builds

a table of user-designated names for program variables and their

meanings. It then builds a state diagram table with cells for

each state, resulting from each permutation of the variables for

that state. When the state diagram has been created, the user is

asked to enter the identifier of the subroutines/modules

associated with each state. The user is expected to have a

library of pre-coded modules and/or subroutines which perform the

processing for the various states. With the user's subroutine

library and the tables produced by the previous functions, the

program creates a source code program which contains a state

diagram driver and the user's routines. The program described

in this paper and listed in Appendix C is a prototype version

developed to demonstrate the feasibility of the technique. It

is written in CBasic for operation on the CP/M operating system.

(CBasic and CP/M are registered trademarks of Digital Research.)

The only customization required for various processors is

modification of the screen clear command for the user's terminal,

which is specified in the data definition section of the program.

3.2 Primary Menu

The program has a menu which is displayed each time the

* program is invoked and each time a step is completed. The menu

display asks the user to select one of the program's basic

9

1.[

functions:
1) instruction display
2) variable (state vector) definition
3) state diagram specification
4) subroutine identification
5) source program creation
6) session termination

If the user enters an invalid response, the menu is

redisplayed; otherwise program control is transferred to the

specified function. When the function processors return control

to the menu processor, they set status and error messages which

become part of the menu display.

3.3 Instruction Display

When the user selects this option, a brief description of

each function is displayed. The information remains on the

screen until the user returns to the primary menu display by

pressing the Return key.

3.4 Definition of the Variables

This portion of the program allows the user to describe the

variables that will be used in the state table.

The user is asked if a predefined set of variables should be

used. If the response is affirmative, the user is prompted for

the name of the file where the set is stored. If the file is not

found, an error message is displayed and the user is again asked

if a predefined set of variables should be used. When a valid

file name is entered, the data in the file is read into the

Varlist array and the variable specification step is skipped.

If the user does not want to use a pre-defined set of

variables, the program prompts the user for information about

each variable. A sample dialog follows, with user entries in

10

I'
3 boldface.

WHAT IS THE NAME OF VARIABLE I?
master switch
WHAT DOES 0 MEAN FOR MASTER SWITCH?
off
WHAT DOES 1 MEAN FOR MASTER SWITCH?

Von
WHAT IS THE NAME OF VARIABLE 2?

J The user's responses are entered into the Varlist array. Each

1 item in the array contains the user's name for the variable, and

i| the names assigned to the 0 and 1 states.

When the Varlist array has been filled in from user

responses or from a pre-defined file, the user is asked if a

f display of the variables and their definitions is wanted. If the

answer is yes, the permutations of all of the variables are

output in the user's terminology. For example, one value of the

state vector might be displayed as:

Vector 9 1 Master Switch - On
0 Safety Switch = Off
0 Target Status - Inactive
1 Damage Assessment = Neutralized

This display (and others) can be printed by entering the CP/M

print toggle command (Control-P).

The user is then asked if the current set of variable

definitions should be saved for use in another program run. If

the answer is yes, the user is asked to specify a file name. If

the file already exists, the user is given the choice of

replacing the existing file or of specifying another file name.

In the final step of the variable definition process, the

program sets the variable definition flag, sets up a status

message (*Variable Definition Completed") for display on the

menu, and returns control to the primary menu.

.. i

!.I

3.5 State Diagram Creation

The state diagram creation step determines if a state

diagram defined in a previous session should be used, solicits

state names for new diagrams, guides the user in specifying what

action should be taken for each permutation of the state vector,

displays the resulting state diagram, and provides an option to

save the diagram for use in a subsequent program run.

The processor checks the variable definition flag to ensure

that the user has already performed the variable definition step.

If it is off, an error message is set up for display on the menu

and control is returned to the primary menu processor.

If the variables have been defined, the user is asked if a

predefined state diagram should be used. If so, the user is

prompted for the name of the file where the diagram is stored.

If the file is not found, an error message is displayed and the

user is asked again if a predefined diagram should be used. When

a valid file name is entered, the data in it is read into the

Diagram array and the user is asked to specify which state is the

initial program state when the target program starts executing.

The state definition phase Is skipped.

When a new state diagram is being built, the user is asked

to enter the name of each state and to specify which state is the

initial program state for the target program. The user is then

asked if there are any general input conditions that apply to all

states. If, for example, control always passes to the same state

whenever the master switch is off, the user could specify this as

a general input condition and thereby eliminate several entries

12

I
in th. next state diagram definition step. If there are general

input variables, the user is asked for the name of the variable,

J and for the name of the state processing each value of the

variable. Checks are performed to validate the variable and

state names and to ensure that there is no conflict with an

action specified for a previously defined general input variable.

The next step asks the user a series of questions for each

state. First, the user is asked if there are any general input

variaules for the state. If there are, the processing is similar

to that for general variables applying to all states. In cases

of conflict, a general variable result for all states will

override a result specified for a specific state. Second, the

user is asked to specify the outcome for all state vectors which

have not been predetermined by the general input conditions. A

sample dialog, with user responses in boldface, follows (wait and

restart are names of steps).

YOU ARE IN THE WAIT STATE
VECTOR - 9 1 MASTER SWITCH - ON

0 SAFETY SWITCH = OFF
0 TARGET STATUS - INACTIVE
1 DAMAGE ASSESSMENT - NEUTRALIZED

WHAT STATE DO YOU WANT TO BE IN NEXT?
wait
YOU ARE IN THE WAIT STATE
VECTOR - 10 1 MASTER SWITCH - ON

0 SAFETY SWITCH - OFF
1 TARGET STATUS - ACTIVE
0 DAMAGE ASSESSMENT = NOT NEUTRALIZED

WHAT STATE DO YOU WANT TO BE IN NEXT?
restart

For each possible value of the state vector within a state,

the user must specify the next processing state. When this has

been completed (or when a previously defined diagram has beenI!
read in), the user is given the option of having the state

13

!! 7

diagram displayed. The user also has the option of saving the

diagram for use in a subsequent program run.

In the final step of the diagram creation process, the

program sets the diagram build flag, sets up a status message

(OState Diagram Completed") for display on the menu, and returns

control to the primary menu.

3.6 Subroutine Identification

The subroutine identification step gets the name of the

user's subroutine library, scans the library to collect a list of

subroutine labels, asks the user for the label of the subroutine

which is to process each state, and displays the resulting

subroutine state liagram.

The function first checks the variable definition and

diagram build flags. If either flag has not been set, an error

message is set up for display on the menu, and control is

returned to the menu processor.

If the variables have been defined and the state diagram has

been created, the user is asked for the name of the subroutine

library to be used in building the target program. The user is

expected to provide a file that includes a subroutine/module for

executing each state specified in the state diagram. The program

scans the library file to build a list of subroutine labels for

subsequent validation routines. Each subroutine/module on the

library must be preceded by a header record with the characters

OREM#" in the first four positions, followed by the subroutine

label.

The user is then prompted for the label of the subroutine to

14

V,

3 be used for each state. If a label is specified which is not on

the library, an error message is displayed. The program uses the

J labels entered to build a Jump table that corresponds to the

Diagram table, substituting labels for state names.

When the subroutine version of the state diagram is

completed, the user is given the option of having it displayed.

In the final step of the subroutine identification process,

the program sets the subroutine identification flag, sets up a

status message (*Subroutine Identification Completed*) for

display on the menu, and returns control to the menu processor.

3.7 Creating the Source Program

The source program creation module uses a special skeleton

driver program to create the source program file. The skeleton

driver is merged with data collected in the previous steps and

with the user's subroutine library to generate the target source

program.

The user is asked for a file name for the new source

program. If the file already exists, the user is given the

option of replacing the file or of specifying another file name.

A standard skeleton control program is used to generate code

for all programs. (It is listed in Appendix D.) Its control

logic examines the the jump table to determine which module

should be called next, based on the current state and the current

condition of the state vector. The control program for the

prototype program expects subroutines to set the values in the

state vector. A real-time program would, of course, examine its

input lines to determine the state vector.

The file containing the skeleton driver program file is

15

i 6

read and each program line is copied to the target source program

file until an *insert* flag is read. Whenever an insert flag is

found, specific data collected in previous steps is inserted into

the driver program. Insert data includes variables such as the

number of states in the target program and the size of the jump

table, the jump table itself, and other application-specific

data.

When all of the inserts have been processed, the user's

subroutine library is appended to the target program source file.

A program created by the State Diagram Program Generator is

listed in Appendix E.

In the final step, the program sets up a status message

("Source Program Saved on Disk...u) for display on the menu, and

returns control to the menu processor. The user must exit the

State Diagram Program Generator to compile and execute the target

program.

161

I BIBLIOGRAPHY

I. Barnes,B.H. and J.R. Metzner, DECISION TABLE LANGUAGES AND
SYSTEMS, Academic Press, New York, 1977.

2. Beizer, Boris, THE ARCHITECTURE AND ENGINEERING OF DIGITAL
COMPUTER COMPLEXES, Vol. 1, Plenum Press, New York-London,
1971.

3. Biermann, Alan W., "Approaches to Automatic Programming,
"ADVANCES IN COMPUTERS, Vol. 15, pp. 1-63, Academic Press,
New York, 1976.

4. Biermann, Alan W., and R. Krishnaswany, "Constructing
Programs from Example Computation, "IEEE TRANS. ON SOFTWARE
ENGINEERING, Vol. SE-2, pp. 141-153, (Sept. 1976).

5. Birke, D.M., "State Transition Programming Techniques, and
Their Use in Producing Teleprocessing Device Control
Programs, "IEEE TRANS. ON COMMUNICATIONS, Vol. COM-20, No.3,
pp.569-575, (June 1972).

6. Chow, T.S., "Testing Software Design Modelled by Finite
State Machines, "IEEE TRANS. ON SOFTWARE ENGINEERING, Vol.
SE-4, No.3, p.178, (May 1978).

7. Clare, C.R., DESIGNING LOGIC SYSTEMS USING STATE MACHINES,
McGraw-Hill, 1973.

8. Conway, M.E., "Design of a Separate Transition-diagram
Compiler, "COMMUNICATIONS OF THE ACM, Vol. 6, pp. 396-408,
(July 1953).

9. Dietmeyer, Donald L., LOGIC DESIGN OF DIGITAL SYSTEMS, 2nd
ed., Allyn and Bacon, Boston, 1979.

10. Dolotta, T.A., and E.J. McCluskey, "The Coding of Internal
States of Sequential Circuits, "IEEE TRANS. ON ELECTRONIC
COMPUTERS, Vol. EC-13, No.5, pp. 549-562, (October 1964).

11. Gill, Arthur, INTRO. TO THE THEORY OF FINITE STATE MACHINES,
McGraw-Hill, New York, 1962.

12. Grasselli, A., and F. Luccio, "A Method for Minimizing the
Number of Internal States in Incompletely Specified
Sequential Networks, "IEEE TRANS. ON ELECTRONIC COMPUTERS,
Vol. EC-14, No. 3, pp. 330-359, (June 1965).

13. Heldorn, G.E., "Automatic Programming Through Natural
Language Dialogue: A Survey, "IBM J. OF RESEARCH AND
DEVELOPMENT, Vol. 20, pp. 302-313, (July 1976).

14. Hill, F.J., and G.R. Peterson, INTRO. TO SWITCHING THEORY

17

AND LOGIC DESIGN, 2nd Ed., Wiley, 1974.

15. Huffman, D.A., gThe Synthesis of Sequential Switching
Circuits, J. FRANKLIN INST., Vol. 257, No.3, pp.161-190;
No.4, pp. 275-303, (March-April 1954).

16. Karp, R.M., "Some Techniques of State Assignment for
Synchronous Sequential Machines, "IEEE TRANS. ON ELECTRONIC
COMPUTERS, Vol. EC-13, No.5, pp. 507-518, (October 1964).

17. King, P.J.H., and R.G. Johnson, Some Comments On the Use of
Ambiguous Decision Tables and Their Conversion to Computer
Programs, "COMMUNICATIONS OF THE ACM, Vol. 16, No.5, pp.
287-290, (May 1973).

18. Landau, Jack V., "Hardware Oriented State Description
Techniques, "in D.F. Stout (Ed.), MICROPROCESSOR
APPLICATIONS HANDBOOK, McGraw-Hill, 1982.

19. Manna, A., and R.J. Waldinger, "Toward Automatic Program
Synthesis, "COMMUNICATIONS OF THE ACM, Vol.14, pp. 151-165,
(March 1971).

20. McNaughton, R., and H. Yamada, "Regular Expressions and
State Graphs for Automata, "IRE TRANS. ON ELECTRONIC
COMPUTERS, Vol. EC-9, No. 1, pp. 39-47, (March 1960).

21. Mealy, G.H., " A Method for Synthesizing Sequential
Circuits, "BELL SYSTEM TECH. J., Vol. 34, No. 5, pp. 1045-
1080, (September 1955).

22. Moore, E.F., "Gedanken Experiments on Sequential Machines,
in C.E. Shannon and J. McCarthy (Eds.) AUTOMATA STUDIES,
Princeton Univ. Press, Princeton, N.J., 1956.

23. Motorola, Inc., USERS GUIDE; EXORMACS REAL TIME MULTITASKING
SYSTEM, 1981.

24. Parnas, D.L., "On the Use of Transition Diagrams in the
Design of a User Interface For an Interactive Computer
System,"PROC. OF THE 24TH NATIONAL CONFERENCE OF THE ACM,
pp.379-385, 1969.

25. Paull, M.C., and S.H. Unger, "Minimizing the Number of
States in Incompletely Specified Sequential Switching
Functions, "IRE TRANS. ON ELECTRONIC COMPUTERS, Vol. EC-8,
No.3, pp.356-357, (September 1959).

26. Robin, M.O., and D. Scott, "Finite Automata and Their
Decision Problems, "IBM J. OF RESEARCH AND DEVELOPMENT,
Vol.3, No.2, pp.114-125, (April 1959).

27. Slagle, J.R., ARTIFICIAL INTELLIGENCE: THE HEURISTIC

18

1 PROGRAMMING APPROACH, McGraw-Hill, New York, 1971.

28. Stearns, R.E., and 3. Hartmanis, "On the State Assignment
Problem For Sequential Machines, II, RIRE TRANS. ONIELECTRONIC COMPUTERS, Vol. EC-10, No. 4, pp.593-603,
(December 1961).

19

Appendix A

1iREM APPENDIX A
5 REM PROGRAM IMPLEMENTING MEALY MACHINE
10 DIM4 NXT%<4,3>:REM MATRIX WHICH STORES STATE TRANSITION TABLEJ20 DIM TASKS<4,3>:REM MATRIX WHICH STORES TASKS (OUTPUTS>
25 REM READ IN STATE TABLE
30 FOR S-1 TO 4:POR 1-0 TO 3
40 READ X%:NXT%<S,I>-X%:NEXT 1 :NEXT S
45 REM SET UP TASK ARRAY
50 FOR S-1 TO 4:FOR 1-0 TO 3
60 READ X%:TASK%<S,>nX%:IJEXT 1:NEXT S
90 REM NEXT STATE MATRIX
100 DATA 2,3,3,1
110 DATA 1,2,2,4
120 DATA 4,4,3,3
130 DATA 1,2,3,3
190 REM TASK MATRIX
200 DATA 2,1,1,3
210 DATA 4,2,2,6
220 DATA 1,1,4,.l
230 DATA 3,2,5,5
300 PRES%1l:REM START IN STATE 1
350 PRINTOSTATEOPRES%;
400 GOSUB 9000:REM GO TO INPUT SUBROUTINE
500 TSK%-TASK%<PRES% ,INP%>
600 ON TSK% GOSUB 1000,2000,3000,4000,5000,AOOO
700 PRES%-NXT%<PRES%,INP%>:PRINT" STATE"PRES%; :GOTO 400
999 REM DUMMY TASK SUBROUTINES
1000 PRINT"TSK 1";:RETURN
2000 PRINT*TSK 2";:RETURN
3000 PRINT"TSK 3";:RETURN
4000 PRINT"TSK 4";:RETURN
5000 PRINT"TSK 5*;:RETURN
6000 PRINT"TSK 6";:RETURN
9000 READ INP%:PRINT"INPUT"INP%:IF INP%=1 THEN PRINT"DONE":END
9003 GET PS:IF PS-"" THEN 9003:REM HIT ANY KEY TO PROCEED TO NEXT TASK
9005 RETURN
9009 REM INPUT SEQUENCE TO VISIT ALL NEXT STATE ENTRIES ON STATE TABLE
9010 DATA 3,0, 1,2,0,1,2,3,1,1, 3,0,2,0,2,0, 3,-i

A-1

APPENDIX B

1 REM APPENDIX B
4 REM PROGRAM IMPLEMENTING MOORE TABLE

DIM NXT%<8,7>:REM MATRIX WHICH STORES STATE TRANSITION TABLE
10 FOR S-1 TO 8:FOR 1-0 TO 3:REM READ IN STATE TABLE
20 READ X%:NXT%<S,1>-X%
39 NEXT 1:NEXT S
35 REM NEXT STATE MATRIX
40 DATA 3,4,4,1
50 DATA 3,4,4,1
60 DATA 2,3,3,8
70 DATA 7,7,5,5
89 DATA 7,7,5,5
90 DATA 7,7,5,5
92 DATA 1,3,6,6
94 DATA 1,3,5,6
100 PRES%-il:REM START IN STATE 1
20 GOTO 60
409 GOSUB 9900:REM GO TO INPUT SUBROUTINE
500 PRES%-NXT%<PRES%,INP%>:REM GET NEXT STATE
609 ON PRES% GOSUB 1000,2000,3000,4000,5000,6000,7000,8000
709 GOTO 400
999 REM DUMMY TASK SUBROUTINES
1000 PRINTSTATE 1 TSK 3";:RETURN
2009 PRINT"STATE 2 TSK 4";:RETURN
3000 PRINT*STATE 3 TSK 2";:RETURN
4009 PRINT*STATE 4 TSK 1*;:RETURN

* 5000 PRINT"STATE 5 TSK 4";:RETURN
6009 PRINT"STATE 6 TSK 5";:RETURN
7000 PRINT"STATE 7 TSK 1";:RETURN
8000 PRINT'STATE 8 TSK 61;:RETURN
8999 REM THE INPUT SUBROUTINE
9000 READ INP%:PRINT" INPUT"INP%:IF INP%=l THEN PRINT"DONE':END
9003 GET PS:IF PS-"" THEN 9003:REM HIT ANY KEY TO PROCEED TO NEXT STATE
9005 RETURN
9009 REM INPUT SEQUENCE TO VISIT ALL NEXT STATE ENTRIES ON STATE TABLE
9010 DATA 3,0,1,2,0,3,1,2,2,3,0,0,2,1,3,1,2,0,1,3,1,3,2
9020 DATA 2,1,1,3,3,3,0,1,0,0,3,0,1,0,1,0,1,3,1,1,0,2,-l

B-1

.,a

I APPENDIX C

REM* PROGRAM% STATE DIAGRAM PROGRAM GENERATOR
REM4* AUTHOR: JEANNINE WOLF, COMPUTER SYSTEM ASSOCIATES
REM* CONTRACT: ARMY RESEARCH ORGANIZATION DAAG-29-81-C-0J621

100
REM* DATA DEFINITION AND INITIALIZATION

ONE--i
OFFS-0
PROG .RUN%-ON%

MAX.*VARSI-8
MAX. STATES%-10
MAX.SUB.LABELS%=500
SUB. HEADS-*REM#"
STATUS .MSGS-"'
SPACES-"
NULLS-*"
JUMP. ThL. SIZE%-2^MAX.VARS%+l
DEFINE. VARS%-OFF%
BUILD. STATE%-OFF%
IDENTIFY. SUBS%*OFF%
SCREEN.CLEARS-CHRS (30) +CHRS (26)

DIM VARLISTS (MAX.VARS%, 3)
DIM DIAGRAMS(MAX.STATES%,JUMP.TBL.SIZE%)
DIM JUM4PS(MAX.STATES%,JUMP.ThL.SIZE%)
DIM SUBIDS (MAX.SUB.LABELS%)

c-1

2000
REJ4* MAINLINE PROCESSOR

IF PROG.RUN%-OFF% THEN GOTO 99000
PRINT SCREEN.CLEARS
PRINT
PRINT
PRINT
PRINT
PRINT TAB(25) ;"DISPLAY INSTRUCTIONS"
PRINT
PRINT TAB(25) ;"DEFINE VARIABLES"
PRINT
PRINT TAB(25);"BUILD STATE DIAGRAM4"
PRINT
PRINT TAB(25W IDENTIPY SUBROUTINES"
PRINT
PRINT TAB(25);"CREATE SOURCE PROGRAM"
PRINT
PRINT TAB(25);*EXIT SESSION*
PRINT
PRINT STATUS.MSGS
STATUS .MSGS-"*
PRINT
PRINT
PRINT OSELECT OPERATION (ENTER 2 OR MORE CHARACTERS)'

INPUT FUNCTIONSt
IF LEFTS(FUNCTIONS,2)-*DE* THEN GOSUB 20000
IF LEFTS(FUNCTIONS,2)-"BU" THEN GOSUB 30000
IF LEFTS(FUNCTION$,2)="ID* THEN GOSUB 40000
IF LEFTS(FUNCTIONS,2)-*CR* THEN GOSUB 50000
IF LEFTS(FUNCTIONS,2)-*DI" THEN GOSUB 90000
IF LEFTS(FUNCTIONS,2)-"EX" THEN PROG.RUN%=OFF%
GOTO 2000 \RESUME DISPLAY UNLESS END

C-2

"I

3 20000 RM*****************************
REM* 20000 - DEFINE VARIABLES *

REM* VROW%-VARIABLE LIST ROW INDEX
REM VCOL%-VARIABLE LIST COLUMN INDEX
REM NCOL%-NAME COLUMN FOR VARIABLE LIST
NCOL%-1
NR.VARS%-0
PRINT SCREEN.CLEARS
PRINT
PRINT
PRINT TAB(25);"DEFINE VARIABLES"
PRINT

21000 REM**************SEE IF EXISTING FILE SHOULD BE USED************
PRINT "DO YOU WANT TO USE A PRE-DEFINED SET OF VARIABLES? (Y/N)"
INPUT TEMPS
IF TEMPS-*N" THEN GOTO 22000
PRINT "ENTER THE FILE NAME FOR THE VARIABLE SET"
INPUT VAR.FILE.NAMES
IF SIZE(VAR.FILE.NAMES)-0 THEN \

PRINT "***NO FILE FOR ";VAR.FILE.NAMES :\
GOTO 21000

OPEN VAR.FILE.NAMES AS 1
FOR VROW%-1 TO MAX.VARS%

FOR VCOL%=1 TO 3
READ #1; VARLISTS(VROW%,VCOL%)
IF END #1 THEN 21900

NEXT VCOL%
NEXT VROW%
NR.VARS%=MAX.VARS%

21900 IF NR.VARS%=0 THEN NR.VARS%-VROW%-1
CLOSE 1
GOTO 25000

22000 REM************SOLICIT VARIABLE NAMES AND MEANINGS*****************
PRINT
PRINT "YOU WILL BE ASKED THREE QUESTIONS ABOUT EACH STATE VARIABL,."
PRINT "PRESS RETURN TO END THE DIALOG"
PRINT
FOR VROW%-1 TO MAX.VARS%

PRINT "WHAT IS THE NAME OF VARIABLE ";VROW%
INPUT LINE VAR.NAMES
IF VAR.NAMES-NULLS THEN \

NR.VARS%-VROW%-l :\
GOTO 25000

VARLISTS(VROW%,NCOL%)-VAR.NAMES
PRINT "WHAT DOES 0 MEAN FOR "; VARLISTS(VROW%,NCOL%)
INPUT VARLISTS(VROW%,2)
PRINT "WHAT DOES 1 MEAN FOR "; VARLISTS(VROW%,NCOL%)
INPUT VARLISTS(VROW%,3)

NEXT VROW%

C-3

NR.VARSI-MAX. VARS%

25660 REM****************PRINT THE MEANING OF EACH VECTOR*******************
PRINT "DO YOU WANT TO PRINT THE VARIABLES AND DEFINITIONS? (YIN)*
INPUT TEMPS
IF TEMPS-"N' THEN GOTO 27080
FOR VAL.LOOPI-1 TO 2^NR.VARSI

VECTOR%-VAL. LOOP%-1
MASK%in(2-NR.VARS%)/2 REM INITIALIZE VECTOR BIT MASK
PRINT
PRINT 'VECTOR*; VECTOR%;
FOR VROW%-l TO NR.VARS%

RESULT~aVECTOR% AND MASK%
IF RESULT% - 0 THEN\

VCOL%-2\
ELSE \

RESULTI-1 :
VC OL%- 3

MASK%-MASK%/2 REM RESET MASK FOR NEXT BIT POS
PRINT TAB(15) ;RESULT%;VARLISTS(VROW%,NCOL%) ;"-";\

VARLISTS (VROW% ,VCOL%)
NEXT VROW%
PRINT

NEXT VAL.LOOP%
PRINT
INPUT "PRESS RETURN TO CONTINUE";LINE TEMPS

27000 REM4***********OPTION TO SAVE VARIABLES ON DISK***********************

PRINT *DO YOU WANT TO SAVE THIS SET OF VARIABLES? (YIN)"
IFPU TEMPSN THNGT290

27100 F RITS"ENE THEN FILE NAEFO9HI0ARALEST

INPUT VAR. FILE .NAMES
IF SIZE(VAR.FILE.NAMES)-0 THEN GOTO 27500
PRINT "DO YOU WANT TO REPLACE THE CURRENT ";VAR.FILE.NAMES;"? (Y/N)"
INPUT TEMPS
IF TEt4PSWN* TIHEN GOTO 27100

27500 CREATE VAR.FILE.NAMES AS 1
FOR VROW%=1 TO NR.VARS%

FOR VCOL%-l TO 3
PRINT #1; VARLISTS(VROW%,VCOL%)

NEXT VCOL%
NEXT VROW%
CLOSE 1

29000 REM***************WRAP-UP PROCESSING****************************
IF NR.VARSI > 0 THEN DEFINE.VARS%-ON%-
STATUS.MSCS -"***VARIABLE DEFINITION COMPLETED*

29999 RETURN

c-4

30000 REM 30000 - BUILD STATE DIAGRAM

REM DROW%-STATE DIAGRAM ROW INDEX
REM4 DCOLS-STATE DIAGRAM COLUMN INDEX
REM VROWI-VARIABLE LIST ROW INDEX
REM VCOLS-VARIABLE LIST COLUMN INDEXJ REM4 NCOLS-NAME COLUMN FOR BOTH STATE DIAGRAM AND VARIABLE LIST
NCOL%- 1
NR.STATES%-0
IF DEFINE.VARSIuOFF% THEN GOTO 39050

31060 REM4********SEE IF EXISTING FILE SHOULD BE USED *******

PRINT "DO YOU WANT TO USE A PRE-DEFINED STATE DIAGRAM? (Y/N)"
INPUT TEMPSI IF TEMPS-"N' THEN GOTO 33000
PRINT "ENTER THE FILE NAME FOR THIS STATE DIAGRAM"
INPUT DIAGRAM.*FILE. NAMESI IF SIZE(DIAGRAM.FILE.NAMES)-0 THEN\

PRINT "***NO FILE FOR *;DIAGRAM.FILE.NAMES :
GOTO 31000

OPEN DIAGRAM.FILE.NAMES AS 11 FOR DROW%-1 TO MAX.STATES%
FOR DCOLS-1 TO 2^NR.VARS%+1

READ #1; DIAGRAMS(DROW%,DCOL%)
IF END #1 THEN 31100

NEXT DCOL%
NEXT DROW%
NR. STATES%-MAX.*STATES%

31100 IF NR.STATES%=0 THEN NR.STATES%-DROW%-1
CLOSE 1

31200 PRINT "WHICH STATE IS THE INITIAL PROGRAM STATE?"
INPUT INITIAL. PROG. STATES
MATCH%-OFF% REM VALIDATE STATE NAME
FOR DROW%=1 TO NR.STATES%

IF DIAGRAMS (DROW%,NCOL%)-INITIAL.PROG.STATES THEN\
MATCH%-DROW%

NEXT DROW%
IF MATCH%-OFF% THEN\

PRINT ""'*";INITIAL.PROG.STATES;" IS NOT A VALID STATE" :
GOTO 31200

GOTO 35000

33000 REM ***SOLICIT STATE NAMES AND GENERAL VARIABLES""""""*
PRINT SCREEN.CLEARS
PR INT
PRINT
PRINT
PRINT TAB(25);"BUILD STATE DIAGRAM"
PRINT
PRINT *YOU WILL BE ASKED FOR THE NAME OF EACH STATE."
PRINT "PRESS RETURN TO END THE DIALOG"

C-5

PRINT
NCOL%-1
FOR DROW%-1 TO MAX.STATES%

PRINT 'WHAT IS THE NAME OF STATE '; DROW%
INPUT LINE STATE.NAMES
IF STATE.NAMES-NULLS THEN \

NR.STATES%-DROW%-1 :\
GOTO 33100 \

ELSE \
DIAGRAM$(DROW%,NCOL%)-STATE.NAMES

NEXT DROW%
NR.STATES%-MAX.STATES%

33100 PRINT "WHICH STATE IS THE INITIAL PROGRAM STATE?"
INPUT INITIAL.PROG.STATES
MATCH%-OFF% REM VALIDATE STATE NAME
FOR DROW%-l TO NR.STATES%

IF DIAGRAIS(DROW%,NCOL%)-INITIAL.PROG.STATES THEN \
MATCH%-DROW%

NEXT DROW%
IF MATCH%-OFF% THEN \

PRINT w***";INITIAL.PROG.STATES;" IS NOT A VALID STATE' :\
GOTO 33100

33200 PRINT "ARE THERE ANY GENERAL INPUT CONDITIONS THAT APPLY TO ';

PRINT *ALL STATES? (Y/N)'
INPUT TEMPS
IF TEMPS-*N' THEN GOTO 34000

33300 PRINT "WHICH VARIABLE?"
INPUT LINE TEMPS
IF TEMPS-NULLS THEN GOTO 34000
MATCH%-OFF% REM CHECK FOR VALID VARIABLE
FOR VROW%-1 TO NR.VARS%

IF VARLISTS(VROW%,NCOL%)-TEMPS THEN MATCH%-VROW%
NEXT VROW%
IF MATCH%-OFF% THEN \

PRINT "***";TEMPS;" IS NOT A VALID VARIABLE"
GOTO 33300

VROW%-MATCH%
FOR VCOL%-2 TO 3

33400 PRINT 'WHAT STATE DO YOU WANT TO BE IN WHEN ';

PRINT VARLISTS(VROW%,NCOL%);"";VARLISTS(VROW%,VCOL%);"?"
PRINT aPRESS RETURN IF STATE WILL VARY"
INPUT LINE TEMPS
IF TEMPS-NULLS THEN GOTO 33500
MATCH%-OFF% REM VALIDATE STATE NAME
FOR DROW%-l TO NR.STATES%

IF DIAGRAMS(DROW%,NCOL%)-TEMPS THEN \
MATCH%-DROW%

NEXT DROW%
IF MATCH%-OFF% THEN \

PRINT "****;TEMPS;" IS NOT A VALID STATE' :\
GOTO 33400

MASK%-(2^(NR.VARS%+1-VROW%))/2
FOR VAL.LOOP%-1 TO 2^NR.VARS%

MATCH%-OFF%
VECTOR%-VAL.LOOP%-1

c-6

..,, ' --:._4;

II
I IF (RESULT%-fl AND VCOL%-2) OR (RESULT%<>0 AND VCOL%-3) THEN\

DCOL%-VECTOR%+2 :
MATCH%-ON%

FOR DROW%-1 TO NR.STATES%
IF (MATCH%aON%) AND (DIAGRAMS(DROW%,DCOL%)<>NULLS) AND \
(DIAGRAMS(DROW%,DCOL%)<>TEMPS) THEN \

PRINT w***CONFLICTING GENERAL VARIABLE ALREADY ;I
PRINT "DEFINED FOR "; : \
PRINT DIAGRAMS(DROW%,NCOL%);* VECTOR";VECTOR%

IF (MATCH%-ON%) AND (DIAGRAMS(DROW%,DCOL%)aNULLS) THEN \
DIAGRAMS(DROW%,DCOL%)=TEMPS

NEXT DROW%
NEXT VAL.LOOP%

33500 NEXT VCOL%
PRINT "MORE GENERAL INPUT VARIABLES? (Y/N)"
INPUT TEMPS
IF TEMPS-"Y" THEN GOTO 33300

34000 REM************GET NEXT STATE FOR EACH VECTOR************************
PRINT SCREEN.CLEARS
PRINT "THE NEXT SERIES OF QUESTIONS WILL BE REPEATED FOR EACH STATE."
FOR DROW%-1 TO NR.STATES%
DCOL%-2

PRINT
PRINT ---------- START STATE DEFINITION-----------
PRINT
PRINT "YOU ARE IN THE *;DIAGRAMS(DROW%,NCOL%);" STATE*
PRINT "ARE THERE ANY GENERAL INPUT VARIABLES FOR THIS STATE? (Y/N)"
INPUT TEMPS
IF TEMPS="N" THEN GOTO 34300

34100 PRINT "WHICH VARIABLE?"
INPUT LINE TEMPS
IF TEMPS-NULLS THEN GOTO 34300
MATCH%-OFF% REM CHECK FOR VALID VARIABLE
FOR VROW%=1 TO NR.VARS%

IF VARLISTS(VROW%,NCOL%)=TEMPS THEN MATCH%=VROW%
NEXT VROW%
IF MATCH%=OFF% THEN \

PRINT "***";TEMPS;" IS NOT A VALID VARIABLE"
GOTO 34100

VROW%-MATCH%
FOR VCOL%-2 TO 3

34200 PRINT "WHAT STATE DO YOU WANT TO BE IN WHEN ";
PRINT VARLISTS(VROW%,NCOL%);"a";VARLISTS(VROW%,VCOL%);"?"
PRINT "PRESS RETURN IF STATE WILL VARY"

34210 INPUT LINE TEMPS
IF TEMPS-NULL$ THEN GOTO 34250
MATCH%=OFF% REM CHECK FOR VALID STATE NAME
FOR DROW1%-1 TO NR.STATES%

IF DIAGRAMS(DROW1%,NCOL%)=TEMPS THEN \
MATCH%=ON%

NEXT DROW1%
IF MATCH%-OFF% THEN \

PRINT "***";TEMPS;" IS NOT A VALID STATE, "; :\

C-7

I.7

PRINT *RE-ENTER THE STATE NAME" :
GOTO 34210

MASK%-(2^(NR.VARS%+1-VROW%))/2
FOR VAL.LOOP%-1 TO 2^NR.VARS%

MATCH%-OFF%
VECTOR%-VAL. LOOPI-l
RESULT%-VECTOR% AND MASK%
IF (RESULT%-0 AND VCOL%-2) OR (RESULT%<>@ AND VCOL%-3)\

THEN \
MATCH%-ON% :
DCOL1%-VECTOR%+2

IF (MATCH%-ON%) AND (DIAGRAM$(DROW%,DCOL1%)-NULLS) THEN\
DIAGRAMS (DROW% ,DCOL1%) -TEMPS

NEXT VAL.LOOP%
34250 NEXT VCOL%

PRINT "MORE GENERAL VARIABLES FOR THIS STATE? (YIN)"
INPUT TEMP$
IF TEMPS-*Y* THEN GOTO 34100

34300 FOR VAL.LOOP%-1 TO 2^NR.VARS%
IF DIAGRAM$(DROW%,DCOL%)<>NULLS THEN GOTO 34500
VECTOR%=VAL. LOOP%-l
MASK%-(2^NR.VARS%)/2 REM INITIALIZE VECTOR BIT MASK

REM E.G. 100,010,001
PRINT
PRINT "YOU ARE IN THE ";DIAGRAMS(DROW%,NCOL%);" STATE, "

PRINT *VECTOR -';VECTOR%
FOR VROWI-1 TO NR.VARS%

RESULT%-VECTOR% AND MASK%
IF RESULT% -0 THEN\

VCOL%-2\
ELSE\

VCOL%- 3
MASK%-MASK%/2 REM RESET MASK FOR NEXT BIT P05
PRINT TAB(8) ;VARLISTS(VROW%,NCOL%) ;"-";
PRINT VARLISTS (VROW%, VCOL%)

NEXT VROW%
PRINT 'WHAT STATE DO YOU WANT TO BE IN NEXT?"

34400 INPUT STATE.NAMES
MATCH%-OFF% REM CHECK FOR VALID STATE NAME
FOR DROW1%-1 TO NR.STATES%

IF DIAGRAMS(DROW1%,NCOL%)-STATE.NAMES THEN\
MATCH%-ON%

NEXT DROW1%
IF MATCH%-OFF% THEN\

PRINT "***";STATE.NAMES;" IS NOT A STATE,";:
PRINT "RE-ENTER THE STATE NAME"*:
GOTO 34400-

DIAGRAM$ (DROW% ,DCOL%) -STATE.NAMES
34500 DCOL%-DCOL% +4 1

NEXT VAL.LOOP%
NEXT DROW%

C -8

35000 REM*******************PRINT THE STATE DIAGRAM4************************
PRINT *DO YOU WANT TO DISPLAY THE STATE DIAGRAM? (Y/N)"
INPUT TE14PS
IF TEMPSrnN" THEN GOTO 37000I IF NR.STATESI > 7 THEN\

PRINT.LIMITS - 7\
ELSE \

PRINT.LIMITI - NR.STATES%
PRINT SCREEN. CLEARS
REM PRINT DIAGRAM FOR STATES 1-7
PRINTI PRINT TAB(1);LEFTS(HYPHENSS,i) ;" U

FOR DROWI-1 TO PRINT.LIMIT%
PRINT LEFTS(HYPHENSS,10);

NEXT DROW%
TPOS%-(PRINT.LIMIT% * 10) / 2
PRINT TAB(l);'INPUT";TAB(TPOS%);"N E X T S T A T Ew
TPOS%-10I PRINT *VECTOR";
FOR DROW%-1 TO PRINT.LIMIT%

PRINT TAB(TPOS%) ;LEFTS((DIAGRAMS(DROW%,1)) 18);
TPOS%-TPOS% + 10

NEXT DROW%
PRINT TAB(1) ;LEFTS(HYPHENS$,6) ;
FOR DROW%-1 TO PRINT.LIMIT%

PRINT LEFTS(HYPHENSS,10);
NEXT DROW%
FOR DCOL%-2 TO 2^NR.VARS% + 1

VECTOR%-DCOL% - 2
PRINT TAB(1) ;VECTOR%;
TPOS%-10
FOR DROW%=1 TO PRINT.LIMIT%

PRINT TAB(TPOS%);LEFTS((DIAGRAM$(DROW%,DCOL%)),8);
TPOS%-TPOS% + 10

NEXT DROW%
NEXT DCOL%
PRINT
PRINT
PRINT
REM PRINT DIAGRAM FOR STATES 8-MAX
IF NR.STATES% < 8 THEN GOTO 35900
PRINT. LIMIT%-NR. STATES%
PRINT TAB(1) ;LEFTS(HYPHENS$,6) ;
FOR DROWI-8 TO PRINT.LIMIT%

PRINT LEFTS(HYPHENSS,10);
* NEXT DROW%

TPOSS-U(PRINT.LIMIT% - 8) * 10) / 2
PRINT TAB(1);"INPUT";TAB(TPOS%);"N E X T S T A T E"
TPOS%-10
PRINT "VECTOR";

* FOR DROW%-R TO PRINT.LIMIT%
PRINT TAB(TPOS%) ;LEFTS((DIAGRAMS(DROW%,1)) ,8);
TPOS%-TPOS% + 10

NEXT DROW%
PRINT TAB(1);LEFTS(HYPHENSS,6);" ;

C-9

FOR DROW%w8 TO PRINT.LIMIT%
PRINT LEFTS(BYPRENSS,10);

NEXT DROW%
FOR DCOL%=2 TO 2^NR.VARS% + 1

VECTOR%-DCOL% - 2
PRINT TAB(1} ;VECTOR%;
TPOS%-10
FOR DROW%a8 TO PRINT.LIMIT%

PRINT TAB(TPOS%) ;LEFTS((DIAGRAMS(DROW%,DCOL%)) ,8);
TPOS%-TPOS% + 10

NEXT DROW%
NEXT DCOL%
PRINT
PRINT

35900 INPUT wPRESS RETURN TO CONTINUE";LINE TEMPS

37000 REM********OPTION TO SAVE DIAGRAM ON DS***********************
PRINT "DO YOU WANT TO SAVE THIS STATE DIAGRAM? (Y/N)"
INPUT TEMPS
IF TEMPS-"N" THEN GOTO 39000

37100 PRINT "ENTER THE FILE NAME FOR THIS STATE DIAGRAM"
INPUT DIAGRAM. FILE. NAMES
IF SIZE(DIAGRAM.FILE.NAMES)=0 THEN GOTO 37500
PRINT "DO YOU WANT TO REPLACE THE CURRENT ";DIAGRAM.FILE.NAMES;
PRINT - FILE? (Y/N)"
INPUT TEMPS
IF TEMPS="N" THEN GOTO 37100

37500 CREATE DIAGRAM.FILE.NAMES AS 1
FOR DROW%-1 TO NR.STATES%

FOR DCOL%-l TO 2^NR.VARS%+l
PRINT #1; DIAGRAMS(DROW%,DCOL%)

NEXT DCOL%
NEXT DROW%
CLOSE 1

39000 REM**************WRAP-UP AND ERROR PROCESSING*********************
STATUS.MSGS="***STATE DIAGRAM COMPLETED"
BUILD. STATE%-ON%
GOTO 39999

39050 STATUS.MSGS="***YOU MUST DEFINE THE VARIABLES FIRST"
39999 RETURN

C-10 1

I
!

40000 REM***
REM* 40000 - IDENTIFY SUBROUTINES

IF DEFINE.VARS%-OFF% THEN GOTO 49000
IF BUILD.STATE%-OPF% THEN GOTO 49000
PRINT SCREEN.CLEARS
PRINT
PRINT
PRINT TAB(25); "IDENTIFY SUBROUTINES"
PRINT
PRINT OWHAT IS THE FILE NAME OF THE SUBROUTINE LIBRARY?"

40100 INPUT SUBROUTINE.LIB.NAMES
IF SIZE(SUBROUTINE.LIB.NAMES)=0 THEN \

PRINT "***NO FILE FOR ";SUBROUTINE.LIB.NAMES :\
PRINT 'RE-ENTER THE NAME OF THE SUBROUTINE LIBRARY" :\
GOTO 40100

40200 REM*****BUILD LIST OF LIBRARY SUBROUTINE LABELS******************
OPEN SUBROUTINE.LIB.NAMES AS 1
SROW%-1

40300 READ f1; LINE SUB.LINE$
IF END $1 THEN 40900
IF LEFTS(SUB.LINES,4)=SUB.HEADS THEN \

TEMPS-MIDS (SUB.LINES,5,31) :\
TEMP%-LEN(TEMPS) - 1 :\
SUBIDS (SROW%) -LEFTS (TEMPS,TEMP%) :\
SROW%-SROW% + 1

IF SROW%-MAX.SUB.LABELS% THEN \
GOTO 49100 REM ABORT PROCESS

REM CONTINUE READING UNTIL END OF FILE
GOTO 40300

40900 NR.SUB.LABELS%-SROW%
CLOSE 1

41000 REM**********CORRELATE STATES WITH SUBROUTINES*********************
PRINT
PRINT "ENTER THE STATEMENT NUMBER TO BE CALLED FOR EACH OF THE ";
PRINT "FOLLOWING STATES"
FOR ISl%-l TO NR.STATES%

PRINT
ISSTATES-DIAGRAMS(ISI%,1)

41200 PRINT ISSTATES;" STATE SUBROUTINE'
INPUT ISLABELS
MATCH%-OFF% REM VALIDATE LABEL
FOR SROW%=1 TO NR.SUB.LABELS%

IF SUBIDS(SROW%)-ISLABELS THEN \
MATCH%-SROW%

NEXT SROW%
IF MATCH%-OFF% THEN \

PRINT '****;ISLABELS;" NOT ON ";SUBROUTINE.LIB.NAMES; :\
PRINT " LIBRARY" :\
GOTO 41200

C-1.

LL_

FOR 1S2%-1 TO NR.STATES%
FOR 153%-i TO 2-NR.VARS%+l

IF DIAGRAMS(IS2%,IS3%)<>ISSTATES THEN GOTO 41500
LET JUMPS(1S2%,1S3%)-ISLABELS

41500 NEXT 153%
NEXT 1S2%

NEXT I11

42000 REM***************PRINT SUBROUTINE DIAGRAM**********************
PRINT "DO YOU WANT TO PRINT THE SUBROUTINE STATE DIAGRAM? (YIN)"
INPUT TEMPS

IF TEMPS-"N" THEN GOTO 45000

IF NR.STATES% > 7 THEN\I
PRINT.LIMIT%-7\

ELSE \
PRINT. LIMIT%-NR. STATES%

PRINT SCRAEN. CLEARS
REM PRINT DIAGRAM FOR STATES 1-7
PRINT
PRINT TAB(1) ;LEFTS(HYPHENSS,6);" "
FOR JROW%:1 TO PRINT.LIMIT%

PRINT LEFTS(HYPHENSS,10);
NEXT JROW%
TPOS%-(PRINT.LIMIT% * 10) / 2
PRINT TAB(1);" ";TAB(TPOS%);*N E X T S T A T E"
TPOS%=10
PRINT "INPUT";
FOR JROW%=1 TO PRINT.LIMIT%

PRINT TAB(TPOS%) ;LEFTS((DIAGRAMS(JROW%,1l)) ,8);
TPOS%-TPOS% + 10

NEXT JROW%
TPOS%=10
PRINT TAB(1) ;*VECTOR*;
FOR JROW%-1 TO PRINT.LIMIT%

PRINT TAB(TPOS%) ;LEFT$((JUMPS(JROW%,l)) ,8);
TPOS%=TPOS% + 10

NEXT JROW%
PRINT TAB(l);LEFTS(HYPHENSS,6);" "

FOR JROW%=1 TO PRINT.LIMIT%
PRINT LEFTS(HYPHENSS,10);

NEXT JROW%
FOR JCOL%-2 TO 2^NR.VARS% + 1

VECTOR%=JCOL% - 2
PRINT TAB(1) ;VECTOR%;
TPOS%=10
FOR JROW%=1 TO PRINT.LIMIT%

PRINT TAB(TPOS%) ;LEFTS((JUMPS(JROW%,JCOL%)) ,8);
TPOS%=TPOS% + 10

NEXT JROW%
NEXT JCOL%
PRINT
PRINT
PRINT
REM PRINT DIAGRAM FOR STATES 8-MAX
IF NR.STATES% <~ 9 THEN GOTO 42900

C-12

PRINT. LIMIT%uNR. STATES%1 PRINT TAB(1);LEFTS(lYPfENSS,15);*
FOR JROW%-8 TO PRINT.LIMIT%

PRINT LEFTS(HYPHENSS,10);
NEXT JROW%
TPOSI-((PRINT.LIMIT% - 8) * 10) / 2
PRINT TAB(l);" ;TAB(TPOSI);"N E X T S T A T E"
TPOS%-10
PRINT "INPUT";
FOR JROW%=8 TO PRINT.LIMIT%

PRINT TAB(TPOS%);LEFTS((DIAGRAMS(JROW%,1)) ,8);
TPOS%-TPOS% + 10

NEXT JROW%
TPOS%-1 0
PRINT TAB(1) ;VECTOR";
FOR JROW%-8 TO PRINT.LIMIT%

PRINT TAB(TPOS%);LEFTS((JUMPS(JROW%,I)) ,8);
TPOS%-TPOS% + 10

NEXT JROW%
PRINT TAB(1) ;LEFTS(HYPHENSS,6) ;
FOR JROW%=8 TO PRINT.LII4IT%

PRINT LEFTS(HYPHENSS,10);
NEXT JROW%
FOR JCOL%-2 TO 2-NR.VARS% + 1

VECTOR%-JCOL% - 2
PRINT TAB(1) ;VECTORI;
TPOS%= 10
FOR JROW%-8 TO PRINT.LIMIT%

PRINT TAB(TPOS%) ;LEFTS ((JUMPS (JROW%,JCOLE') ,8);
TPOS%-TPOS% + 10

NEXT JROW%
NEXT JCOL%
PRINT
PRINT

42900 INPUT "PRESS RETURN TO CONTINUE";LINE TEMPS

45000 REM*************WRAP-UP AND ERROR PROCESSING*************************
IDENTIFY. SUBS%=ON%
STATUS.MSGS-****SUBROUTINE IDENTIFICATION COMPLETED"
GOTO 49999

49000 STATUS.MSGS-\
****YOU MUST DEFINE THE VARIABLES AND BUILD THE DIAGRAM FIRSTE

GOTO 49999
49100 STATUS.MSGS-

****TOO MANY LABELS ON SOURCE LIBRARY; CANNOT CONTINUE PROCESSING"
49999 RETURN

C-13

5669 REM*******t******tt**ttttt****t*t****************.

REM* 50000 - CREATE SOURCE PROGRAM *

IF DEFINE.VARS%-OFF% THEN GOTO 5910
IF BUILD.STATE%.OFF% THEN GOTO 59100
IF IDENTIFY.SUBS%-OFF% THEN GOTO 59100

56196 PRINT "WHAT IS THE NAME OF THE NEW SOURCE PROGRAM?"
INPUT SOURCE. PROG.NAMES
IF SIZE(SOURCE.PROG.NAMES)-0 THEN GOTO 51000
PRINT 'DO YOU WANT TO REPLACE THE CURRENT ";SOURCE.PROG.NAMES;"? (Y/N)"
INPUT TEMPS
IF TEMPS-'Y" THEN GOTO 51090
GOTO 59100

51000 REM GET SKELETON PROGRAM DRIVER FILE AND CREATE SOURCE PROGRAM FILE
IF SIZE("SDPGMAIN.LIB")-0 THEN GOTO 59200
PRINT "PROCESSING... PLEASE DON'T INTERRUPT"
OPEN "SDPGMAIN.LIB" AS 1
CREATE SOURCE.PROG.NAMES AS 2

52000 REM COPY DRIVER TO SOURCE FILE UNTIL INSERT FLAG FOUND IN DRIVER
READ #1; LINE SG.LINES
IF END #i THEN 5300
IF LEFT$(SG.LINES,6) - "INSERT" THEN \

SG.INSERT aVAL(MIDS(SG.LINES,7,1) :\
ON SG.INSERT GOSUB 54000, 55000, 56000, 57000 :\
GOTO 52000 \

ELSE \
PRINT USING "&"; #2; SG.LINES :\
GOTO 52000

53000 REM DRIVER ROUTINE COMPLETE; CONCATENATE IT WITH SUBROUTINES
OPEN SUBROUTINE.LIB.NAMES AS 3

53100 READ #3; LINE SG.LINES
IF END #3 THEN 53500
REM INSERT LOGIC TO SCREEN FOR SPECIFIED SUBROUTINES
PRINT USING ""; #2; SG.LINES
GOTO 53100

53500 REM SOURCE PROGRAM GENERATION COMPLETE; CLOSE FILES AND TELL USER
PRINT USING "&"; *2; "END"
CLOSE 1
CLOSE 2
CLOSE 3
STATUS.MSGS-"***SOURCE PROGRAM SAVED ON DISK AS + SOURCE.PROG.NAMES
GOTO 59999

54000 REM INSERT1 SUBROUTINE: PROGRAM HEADER DATA
PRINT USING "&"; *2; "REM * "+SOURCE.PROG.NAMES
RETURN

C-14

IT

' 5500 REM INSERT 2 SUBROUTINE: VARIABLE INITIALIZATION
READ 41; LINE SG.LINES REM CURRENT.STATE% =

FOR SG.ROW%I1 TO NR.STATES%
IF DIAGRAMS(SG.ROW%,1)=INITIAL.PROG.STATES THEN \

SG.LINES-SG.LINE$+JUMPS(SG.ROW%,l) :\
GOTO 55100

NEXT SG.ROW%
55100 PRINT USING "&; #2; SG.LINES

READ #1; LINE SG.LINES REM NR.STATES% -
SG.LINES - SG.LINES + STRS(NR.STATES%)
PRINT USING "&I; #2; SG.LINES
READ #1; LINE SG.LINES REM JUMP.TABLE.SIZE%

SG.LINES - SG.LINES + STRS(2-NR.VARS%+)
PRINT USING "&"; #2; SG.LINES
RETURN

56000 REM INSERT3 SUBROUTINE: JUMP TABLE INSERTION
PRINT USING '&; #2; "REM STATE DIAGRAM TABLE"
REM INSERT REST OF DIAGRAM HERE
PRINT USING "&"; #2; "REM JUMP TABLE"
REM INSERT JUMP TABLE PRINTOUT HERE

REM INSERT DATA STATEMENTS WITH JUMP TABLE VALUES
PRINT USING &"; #2; "REM JUMP TABLE VALUES"
FOR SG.ROW%-1 TO NR.STATES%

SG.LINES-*DATA
FOR SG.COL%-1 TO 2^NR.VARS%+1

SG.LINES-SG.LINES+JUMPS(SG.ROW%,SG.COL%)+ ,w
IF LEN(SG.LINES)>75 THEN \

SG.LINES-LEFTS(SG.LINES,(LEN(SG.LINES)-I)) :\
PRINT USING "&"; #2; SG.LINES :
SG.LINES"DATA

NEXT SG.COL%
SG.LINES=LEFTS(SG.LINES,(LEN(SG.LINES)-1)) REM STRIP LAST COMMA
PRINT USING "&"; #2; SG.LINES

NEXT SG.ROW%
RETURN

57000 REM INSERT4 SUBROUTINE: GENERATE GOSUB DESTINATIONS
FOR SG.ROW%=1 TO NR.STATES%

SG.SUBS-JUMPS(SG.ROW%,1)
SG.LINES-" IF CURRENT.STATE%-"+SG.SUBS+ \

" THEN GOSUB w+SG.SUBS
PRINT USING "&"; #2; SG.LINES

NEXT SG.ROW%
RETURN

59000 REM **********ERROR PROCESSING ROUTINES*********************
59100 STATUS.MSGSI"***YOU MUST COMPLETE THE FIRST 3 STEPS FIRST"

GOTO 59999
59200 STATUS.MSG$i"***FILE SDPGMAIN.LIB IS MISSING; CANNOT CREATE PROGRAM"

GOTO 59999
59999 RETURN

C-15

90000 R***
REM* 90000 - DISPLAY MASTER MENU INSTRUCTIONS *

PRINT
PRINT ODEFINE VARIABLES*
PRINT a
PRINT TAB(8);"THIS FUNCTION WILL PROMPT YOU FOR THE NAME OF EACH ;
PRINT "STATE VARIABLE."
PRINT TAB(S);'YOU WILL ALSO BE ASKED TO SPECIFY THE MEANING OF ;
PRINT 'EACH VALUE THEO
PRINT TAB(8);"VARIABLE CAN TAKE (0 AND 1). EXAMPLE: MASTER ;
PRINT "SWITCH, 0-OFF, 1-ON."
PRINT 'BUILD STATE DIAGRAM*
PRINT
PRINT TAB(S);*THIS FUNCTION WILL PROMPT YOU FOR THE NAME OF EACH ";

PRINT *STATE IN YOUR*
PRINT TAB(8);*PROGRAM. FOR EACH STATE YOU DEFINE, YOU WILL BE ;
PRINT "ASKED TO SPECIFY"
PRINT TAB(8); 'WHAT ACTION IS TO BE TAKEN (I.E., THE NEXT STATE) ";
PRINT "FOR EACH COMBINATION"
PRINT TAB(8); "OF THE STATE VARIABLES*
PRINT "IDENTIFY SUBROUTINES"
PRINT • 3
PRINT TAB(8);*THIS FUNCTION WILL PROMPT YOU FOR THE IDENTIFIER OF ";
PRINT "THE SUBROUTINE*
PRINT TAB(8);"ASSOCIATED WITH EACH STATE. THESE ARE SUBROUTINES 3;

PRINT OWHICH HAVE ALREADY'
PRINT TAB(8);"BEEN CODED AND PLACED ON A SUBROUTINE LIBRARY.'
PRINT OCREATE SOURCE PROGRAM"
PRINT • f

PRINT TAB(8);"THIS FUNCTION USES YOUR SUBROUTINE LIBRARY AND THE ;
PRINT "TABLES PRODUCED BY"
PRINT TAB(8);"THE PREVIOUS FUNCTIONS TO GENERATE SOURCE CODE FOR ";
PRINT "YOUR PROGRAM."
PRINT
PRINT
INPUT "PRESS RETURN TO CONTINUE";LINE TEMPTS
RETURN

99000 R***
REM* PROGRAM SHUTDOWN *

STOP

END

c-16

A.- . .

I
APPENDIX D

SKELETON PROGRAM DRIVER USED TO GENERATE PROGRAMS

REM1
INSERT1 (USER PROGRAM NAME)
REM1

REM NEEDED FOR SIMULATION, REMOVE WHEN VECTOR INPUTS CAN BE READ
STATE.VECTOR%-0
INPUT wPLEASE HIT RETURN TO START PROGRAM SIMULATION'; LINE TEMPS
RANDOMIZE

REM THESE VARIABLES ARE SET TO ACTUAL VALUES DURING PROGRAM GENERATION
INSERT2 (INITIAL VARIABLE VALUES)

CURRENT. STATE%-
NR.STATES%-
JUMP.TABLE.SIZE%=

REM DATA FOR THE JUMP TABLE IS CREATED DURING SOURCE PROGRAM GENERATION
REM AND THEN READ INTO THE TABLE AT THE START OF THE PROGRAM RUN
DIM JUMP.TABLE%(NR.STATES%,JUMP.TABLE.SIZE%)

FOR PDX1%-1 TO NR.STATES%
FOR PDX2%-1 TO JUMP.TABLE.SIZE%

READ JUMP.TABLE%(PDX1%,PDX2%)
NEXT PDX2%

NEXT PDX1%
INSERT3 (JUMP TABLE DATA)

REM MAIN PROGRAM LOOP
REM CHECK STATE VECTOR VALUE RANGE; STOP PROGRAM IF INVALID
100 IF STATE.VECTOR% < 0 OR STATE.VECTOR% > JUMP.TABLE.SIZE% - 2 THEN \

PRINT "STATE VECTOR OUT OF RANGE* :\
PRINT TAB(5);"VALUE: ";STATE.VECTOR%;* SET BY: *;CURRENT.STATE% :\
GOTO 199 :\
REM STOP PROGRAM RUN

REM SEARCH JUMP TABLE TO DETERMINE NEXT STATE, BASED ON CURRENT STATE
REM AND STATE VECTOR

FOR PDX1%-1 TO NR.STATES%
IF JUMP.TABLE%(PDX1%,I) - CURRENT.STATE% THEN \

CURRENT.STATE% - JUMP.TABLE%(PDX1%,STATE.VECTOR%+2) :\
PDX1%-NR.STATES%

NEXT PDX1%

REM CALL NEXT STATE
INSERT4 (SUBROUTINE CALLS FOR EACH STATE)

REM ANALYZE STATE VECTOR (SIMULATED BY SUBROUTINES WHICH SET X%)
STATE.VECTOR%-X%

REM RESUME MAIN PROGRAM LOOP
GOTO 100

I. D-1

II

REM END OF PROGRAM (WILL NEVER STOP UNLESS SUBROUTINE EXECUTES STOP
REM OR INVALID STATE VECTOR IS DETECTED)
199 STOP

D-2

APPENDIX E

PROGRAM CREATED BY STATE DIAGRAM PROGRAM GENERATOR

REM
REM * EXAMPLE.BAS
REM4

REM NEEDED FOR SIMULATION, REMOVE WHEN VECTOR INPUTS CAN BE READ
STATE.VECTORI-
INPUT OPLEASE HIT RETURN TO START PROGRAM SIMULATION,; LINE TEMPS
RANDOMIZE

REM THESE VARIABLES ARE SET TO ACTUAL VALUES DURING PROGRAM GENERATION
CURRENT.STATE%-1000
NR.STATES%-4
JUMP.TABLE.SIZE%=65

REM DATA FOR THE JUMP TABLE IS CREATED DURING SOURCE PROGRAM GENERATION
REM AND THEN READ INTO THE TABLE AT THE START OF THE PROGRAM RUN
DIM JUMP.TABLE%(NR.STATES%,JUMP.TABLE.SIZE%)

FOR PDX1%-1 TO NR.STATES%
FOR PDX2%-1 TO JUMP.TABLE.SIZE%

READ JUMP.TABLE%(PDXI%,PDX2%)
NEXT PDX2%

NEXT PDX1%
REM STATE DIAGRAM TABLE
REM JUMP TABLE
REM JUMP TABLE VALUES
DATA 1000,1000,1000,1000,10,1000,1000,1000,1000,1000,1000,1000,1000,1000
DATA 1000,10,1000,1000,1000,1000,1000,100,10000,1000,1000,1000,1000
DATA 1000,1000,1000,1000,1000,1000,2000,1000,2000,1000,2000,1000,2000
DATA 1000,2000,1000,2000,1000,2000,10,200,1000,2000,1000,2000,1000
DATA 2000,1000,2000,1000,2000,1000,2000,1000,20,1000,2000,1000
DATA 2000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000, 1000,1000,1000
DATA 1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,I000
DATA 1000,1000,1000,1000,1000,1000,2000,1000,2000,1000,3000,1000,3000
DATA 1000,2000,1000,2000,1000,3000,1000,3000,1000,2000,1000,2000,1000
DATA 3000,1000,3000,1000,2000,1000,2000,1000,3000,1000,3000,1000
DATA 3000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000
DATA 1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000
DATA 1000,1000,1000,1000,1000,1000,2000,1000,2000,1000,3000,1000,4000
DATA 1000,2000,1000,2000,1000,3000,1000,4000,1000,2000,1000,2000,1000

- DATA 3000,1000,4000,1000,2000,1000,2000,1000,3000,1000,4000,1000
DATA 4000,1000,1000,1000,1000,1000,1000,1000,1000,10l0,1000,1000,1000,1000
DATA 1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000
DATA 1000,1000,1000,1000,1000,1000,2000,1000,2000,1000,2000,1000,2000
DATA 1000,2000,1000,2000,1000,3000,1000,4000,1000,2000,1000,2000,1000
DATA 2000,1000,2000,1000,2000,1000,2000,1000,2000,1000,2000,1000

E1U :_ _ __ _ _ _ _ _

REM MAIN PROGRAM LOOP
REM CHECK STATE VECTOR VALUE RANGE; STOP PROGRAM IF INVALID
100 IF STATE.VECTOR% < 0 OR STATE.VECTOR% > JUMP.TABLE.SIZE% - 2 THEN \

PRINT NSTATE VECTOR OUT OF RANGE" :\
PRINT TAB(5) ;"VALUE: ';STATE.VECTOR%;" SET BY: ";CURRENT.STATE% :\
GOTO 199 :\
REM STOP PROGRAM RUN

REM SEARCH JUMP TABLE TO DETERMINE NEXT STATE, BASED ON CURRENT STATE
REM AND STATE VECTOR

FOR PDX1%-1 TO NR.STATES%
IF JUMP.TABLE%(PDX1%,1) - CURRENT.STATE% THEN \

CURRENT.STATE% - JUMP.TABLE%(PDX1%,STATE.VECTOR%+2) :\
PDX1%-NR.STATES%

NEXT PDXI%

REM CALL NEXT STATE
IF CURRENT.STATE%-1000 THEN GOSUB 1000
IF CURRENT.STATE%-2000 THEN GOSUB 2000
IF CURRENT.STATE%-3000 THEN GOSUB 3000
IF CURRENT.STATE%-4000 THEN GOSUB 4000

REM ANALYZE STATE VECTOR (SIMULATED BY SUBROUTINES WHICH SET X%)
STATE.VECTOR%-X%

REM RESUME MAIN PROGRAM LOOP
GOTO 100

REM END OF PROGRAM (WILL NEVER STOP UNLESS SUBROUTINE EXECUTES STOP
REM OR INVALID STATE VECTOR IS DETECTED)
199 STOP
REM#1000
1000 RE***

REM* TEST SUBROUTINE 10000

X%-INT%(RND*100)
IF X% < 0 OR X% > 63 THEN GOTO 1000
PRINT "SUBROUTINE 100, VECTOR -";X%
RETURN

REM*2000
2000

REM* TEST SUBROUTINE 20000

XIINT%(RND*100)
IF X% < 0 OR X% > 63 THEN GOTO 2000
PRINT "SUBROUTINE 2000, VECTOR -*;X%
RETURN

REM$3000
3000

REM* TEST SUBROUTINE 3000

X%-INT%(RND*100)
IF X% < 0 OR X% > 63 THEN GOTO 3000

E-2

.... . 1

PRINT OSUBROUTINE 3000, VECTOR =";X%
STOP
RETURN

REM 4000
4000

REM* TEST SUBROUTINE 40000

X%-INT%(RND*100)IF X% < 0 OR X% > 63 THEN GOTO 4000
PRINT *SUBROUTINE 4000, VECTOR -O;X%

I D RETURN

END

I
I

I

j

I

I

I

I

I

I APPENDIX F

I
LIST OF PUBLICATIONS AND TECHNICAL REPORTS

*Research Directions in Multi-Micros"; Wrightsville Beach, North
Carolina, May 1981

*Software Methodology for Microprocessors"; IECON Proceedings,
Palo Alto, California, October 1982; IEEE Southcon, Atlanta,
Georgia, January 1983

LIST OF SCIENTIFIC PERSONNEL

G. Victor Wintriss
Jeannine Wolf
Dr. Michael Andrews
Nicolas Panos
Andrew Ash

F-1

I

ATE4

